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A spin dynamics algorithm, combining checkerboard updating and a rotation algorithm based on the local
second-rank ordering field, is developed for the Lebwohl-Lasher model of liquid crystals. The method is shown
to conserve energy well and to generate simulation averages that are consistent with those obtained by Monte
Carlo simulation. However, care must be taken to avoid the undesirable effects of director rotation, and a
method for doing this is proposed.
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Many physical systems may be represented by the highly
idealized model of a set of interacting classical spin vectors
located on a regular, often cubic, lattice �1�. This paper con-
siders a classical Hamiltonian of the form

H = �
�j,k�

h�s j · sk� = 1
2�

j
�

k�Nj

h�s j · sk� , �1�

where the interaction energy is given by

h�s j · sk� = − J� 3
2 �s j · sk�2 − 1

2� . �2�

In Eq. �1�, the notation ��j,k� indicates a sum over all nearest
neighbor lattice sites j, k, considering each neighbor pair
only once. Correspondingly, �k�Nj

denotes a sum over sites k
that constitute the set Nj of nearest neighbors of j. Full peri-
odic boundary conditions are assumed. The spins s j are
three-dimensional vectors of unit length, and the pair inter-
action has the form of a simple function h of the scalar
product of the corresponding vectors. The case h�s j · sk)
=−Js j · sk is the well-studied classical Heisenberg model,
which, for J�0, exhibits a ferromagnetic ground state. Our
interest lies in the model defined by Eq. �2�, originally pro-
posed by Lebwohl and Lasher �2,3� to represent the ordering
in nematic liquid crystals. This model has been extensively
studied by Monte Carlo simulations �1� in the canonical en-
semble �4–6�. At high-temperature T, the system is disor-
dered, while for J�0 the low-temperature phase has aligned
spins; the definition of an order parameter will be given be-
low. The phase transition is known to be weakly first order.
Brownian or Langevin dynamics have also been applied to
this model �7–10�; here the approach of spin dynamics is
considered.

The spin-dynamics equations of motion take the form �11�

ṡ j = �
�H

�s j
Ã s j � � j Ã s j; �3�

the dot denotes time differentiation and � is the vector prod-
uct. The local field �H /�s j at spin j defines an instantaneous
angular velocity of precession, � j. The gyromagnetic factor
�, which converts energies into frequency units, will hence-
forth be set to unity. This dynamics conserves the individual
spin lengths, as may be seen by considering the time deriva-
tive of 	s j	2,

d

dt
	s j	2 = 2ṡ j · s j = 2�� j Ã s j� · s j = 0.

The Hamiltonian is also conserved,

Ḣ = �
j

�H

�s j
· ṡ j = �

j

� j · �� j Ã s j� = 0.

Finally, for the class of Hamiltonians of Eq. �1�, the total
magnetization S=� js j is also conserved,

Ṡ = �
j

ṡ j = �
j

�H

�s j
Ã s j = �

j
�

k�Nj

h��s j · sk�sk Ã s j = 0 .

Here h� stands for the derivative of h with respect to its
argument, and the right-hand side vanishes because every
pair interaction is included twice: once as �j ,k� and once as
�k , j�, and these cancel because skÃs j =−s jÃsk.

An algorithm to simulate the spin dynamics of the
Heisenberg model was developed independently by Frank et
al. �12� and Krech et al. �13�. The set of all spins s�
s j� is
subdivided into two sublattices, A and B, in a checkerboard
fashion. All spins on sublattice A interact only with their
nearest neighbors, which are all on sublattice B, and vice
versa. Formally, the generator of infinitesimal rotations of
the whole set of spins may be decomposed into separate,
noncommuting, matrices or operators that act on the corre-
sponding sublattices. A time-reversible approximation to the
full rotation operator acting over a finite time step may be
formally written as

s��t� � B� 1
2�t�A��t�B� 1

2�t�s + O��t3� . �4�

The operator A��t� represents the rotation of the A spins in
an external field caused by the neighboring fixed B spins,
during a period �t; similarly for B. The algorithm proceeds
in an alternating fashion: first, solving the dynamics of the
spins on one sublattice, with the other sublattice spins held
fixed; then vice versa, and so on. For the detailed justifica-
tion of this algorithm, see �12,13�.

For the Heisenberg model, this decomposition is espe-
cially convenient, since � j does not depend on s j, and the
motion of spins on a sublattice ṡ j =� jÃs j with constant � j

may be solved exactly. Set � j = 	� j	, and �̂ j =� j /� j in the
finite rotation formula �14� to give

PHYSICAL REVIEW E 72, 036703 �2005�

1539-3755/2005/72�3�/036703�4�/$23.00 ©2005 The American Physical Society036703-1

http://dx.doi.org/10.1103/PhysRevE.72.036703


s j��t� = ��̂ j · s j��̂ j + sin�� j �t��̂ j Ã s j + cos�� j �t��s j

− ��̂ j · s j��̂ j� . �5�

This represents the practical implementation of one of the A
or B substeps in Eq. �4�.

For the Lebwohl-Lasher model of Eq. �2�,

� j = − 3J �
k�Nj

�s j · sk�sk,

the motion during one time step is no longer a simple rota-
tion, because although the neighboring spins sk are fixed, the
moving spin s j appears on the right. Krech et al. �13� propose
an iterative approach to this problem; here a different method
is adopted. The equation of motion of each spin is conve-
niently written as

ṡ j = � j Ã s j = − 3J �
k�Nj

�s j · sk�sk Ã s j � s j · F j Ã s j ,

defining a tensor field at each lattice site due to the neigh-
boring spins,

F j = − 3J �
k�Nj

�sk ‹ sk − 1
31� .

A term 1
31, where 1 is the unit tensor, is subtracted to make

F j traceless: this has no effect on the equations of motion
since s j ·1Ãs j =s jÃs j =0.

The above equation is well known in another context: the
torque-free time evolution of the angular velocity of a rigid
body, expressed in the frame of reference of the inertia tensor
of the body itself �14�. The symmetric tensor F j plays the
role of the inertia, but it arises from a different mechanism
here. A method for integrating this over a time step has been
proposed �15�. It is convenient to resolve all the vectors in
the principal axis system of F j. Denote the eigenvalues, in
order Fj1�Fj2�Fj3, and the corresponding eigenvectors
1 j ,2 j ,3 j. These are taken to be mutually perpendicular and of
unit length, and all the following vector and matrix expres-
sions are expressed in this frame. It should be noted that the
algorithm is independent of the sign ambiguity associated
with these eigenvectors. F j becomes diagonal, and the in-
stantaneous angular velocity takes a simple form,

F j = Fj1 0 0

0 Fj2 0

0 0 Fj3
�, ⇒ � j = sj1Fj1

sj2Fj2

sj3Fj3
� .

The equations of motion ṡ j =� jÃs j become

ṡ j1 = �Fj2 − Fj3�sj2sj3, and cyclic permutations.

Consider the component involving Fj1, generating rotations
about the 1 j axis �the others are similar�,

ṡ j1 = 0, ṡ j2 = − Fj1sj1sj3, ṡ j3 = Fj1sj1sj2.

During the action of this part of the field, the component sj1
remains constant, and the other two components are rotated
about the 1 j direction at an angular velocity � j1=Fj1sj1. Sup-
pose the generator of this infinitesimal rotation, for the A
sublattice, is represented by the operator A1. This is com-

bined with the generators of rotations about the other two
axes, and approximated over a finite interval in the following
symmetric decomposition �15�:

s��t� � A3� 1
2�t�A2� 1

2�t�A1��t�A2� 1
2�t�A3� 1

2�t�s

+ O��t3� . �6�

A similar approach is applied to the B-lattice updates. Each
separate rotation is implemented with the finite rotation for-
mula �5�. In the above equation, the rotation A1 associated
with the largest eigenvalue Fj1 is centrally placed, and for
brevity this is denoted the 32123 sequence; an empirical
comparison with an alternative 12321 sequence is presented
below.

Ordering in this model is measured by the symmetric and
traceless second-rank tensor,

Q =
1

N
�
j=1

N

� 3
2s j ‹ s j − 1

21� .

Note that this, like the Hamiltonian of Eqs. �1� and �2�, is
invariant to all spin flips s j→−s j. The largest eigenvalue of
Q is conventionally taken to be the order parameter Q, and
the corresponding eigenvector n is the director.

A comparison with Monte Carlo simulations is facilitated
by evaluating the “configurational temperature” introduced
by Rugh �16�, and specifically derived for orientational de-
grees of freedom by Chialvo et al. �17�. The relevant expres-
sion, in our notation, is

kBT =
� j

�	�̂ jH	2�

� j
��̂ j

2H�
= −

1

12

� j
�	ṡ j	2�

�H�
,

where �̂ j is the angular gradient, and �̂ j
2 the angular Laplac-

ian, with respect to the orientation of spin j. The second
expression above is specific to the Lebwohl-Lasher potential,
and is easily obtained from Eq. �2�. In the results reported
below, Boltzmann’s constant kB, and the strength parameter
J, are chosen to be unity.

In Fig. 1 simulation averages generated by the spin dy-
namics algorithm are compared with those produced by con-
ventional Monte Carlo. A system size of 8�8�8 spins is
employed, which is sufficient to show interesting behavior in
the phase transition region, while being economical. It is
worth emphasizing that the aim is not to properly character-
ize the transition, for which much larger systems are required
�4–6�. Spin dynamics runs of 20000 steps, each of length
�t=0.01, starting from equilibrated Monte Carlo configura-
tions, were carried out. Good agreement, within the statisti-
cal errors, is obtained with the Monte Carlo curves. This
suggests that the sampling of the constant-energy hypersur-
face by spin dynamics generates satisfactory averages �but
see later�. Three state points, at T�1.5,1.1,0.7, with order
parameters Q�0.0,0.5,0.8, representative of the disordered,
transitional, and ordered states, respectively, were selected
for further illustration.

The accuracy of the algorithm, as measured by the root-
mean-squared fluctuation of the energy,
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�Erms = ��E2� − �E�2,

is presented in Fig. 2: �Erms��t2 over a wide range of �t.
For the largest time steps there is some drift in the energy
�which is removed in the calculation of �Erms�. Within each
sublattice rotation step, there are several choices for the se-

quence of axes about which to carry out the rotations. The
figure shows that the sequence 12321 �in which the axis
corresponding to the smallest eigenvalue of F j is placed cen-
trally� is worse than the sequence 32123 of Eq. �6� �in which
the largest eigenvalue is central� by a factor 2–3. Also, the
low-temperature ordered state point exhibits worse energy
conservation than the high-temperature, disordered state
point, reflecting the larger torques resulting from the local
field.

There are some caveats associated with spin dynamics
applied to this model. First, as noted, the total magnetization
is conserved exactly by the dynamics, and asymptotically by
the algorithm as �t→0. This is an artificial, physically
meaningless, conservation law for the present model. The
Hamiltonian, and the order parameter defined above, are in-
variant under all spin flips s j→−s j, reflecting the symmetry
of the nematic phase. However, the dynamics is not. If a spin
is flipped, it will begin to rotate in the physically opposite
direction. Macroscopic consequences come from this: in the
ordered phase, the director rotates systematically about the
fixed overall magnetization vector, if S=� js j is nonzero.
This regular precession is superimposed on a general ten-
dency of the director to become aligned with the magnetiza-
tion vector: this happens slowly in the ordered phase, and
more rapidly in the transition region. The rate of precession
is shown in Fig. 3, for both the state points, and for a range
of tilt angles of the director relative to the magnetization, at
a range of net magnetizations obtained simply by flipping
spins in an equilibrated Monte Carlo configuration. The pre-
cession rate is essentially independent of the tilt angle, and is
proportional to both the order parameter Q and to the net
magnetization per spin, as would be expected by considering
the interaction between a typical spin and the local field.

This effect is a potential pitfall in simulations of these
systems by spin dynamics. In a typical configuration of N
spins, the net magnetization per spin will statistically be of
order 1 /�N: this will produce a long-lived slow rotation of
the director, which, if uncorrected, will dominate measured
dynamical properties. If the magnetization is, for any reason,
substantial, the fast director precession distorts the measured

FIG. 1. Energy per spin, and nematic order parameter, as func-
tions of temperature. Lines: Monte Carlo simulations. Circles: spin
dynamics. Statistical errors are smaller than the plotting symbols.
Filled symbols indicate state points studied in more detail below.

FIG. 2. Root-mean-squared energy fluctuations, plotted against
the time step, on logarithmic scales. Circles: T�0.7, Q�0.8.
Squares: T�1.1, Q�0.5 �displaced down by a factor of 10 for
clarity�. Diamonds: T�1.5, Q�0 �displaced down by a factor of
100 for clarity�. Open symbols correspond to the rotation sequence
32123; filled symbols to the sequence 12321 �see the text�. The
dashed line has gradient 2 for reference.

FIG. 3. Director rotation as a function of net magnetization per
spin. Filled symbols: T�0.7, Q�0.8. Open symbols: T�1.1,
Q�0.5. The director is inclined with respect to the magnetization
vector by 30° �circles�, 45° �squares�, 60° �diamonds�, and 90°
�triangles�.
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simulation averages, such as configurational temperature.
However, the solution to this problem seems relatively
straighforward. Since the statistical properties of the
Lebwohl-Lasher model are invariant to spin flips, it should
be satisfactory to fix the system magnetization at the mini-
mum possible magnitude, by flipping spins, at the start of a
simulation run. In addition, once the director is aligned with
the magnetization, the effects seem to be minimal.

In this paper, an algorithm for simulating the Lebwohl-
Lasher model by spin dynamics has been presented. It re-

mains to be seen whether this approach will lead to the de-
termination of interesting “dynamical” properties of this
model, and related models, and possibly to accelerated sam-
pling of the transition region.
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